ASSOBRAFIR Ciência
https://assobrafirciencia.org/article/doi/10.47066/2177-9333.AC20.covid19.017
ASSOBRAFIR Ciência
Artigo Especial

Desmame da ventilação mecânica em pacientes com COVID-19*

Weaning from mechanical ventilation in patients with COVID-19*

Larissa Araújo de Castro, Ângelo Roncalli Miranda Rocha, Carlos Augusto Camillo

Downloads: 31
Views: 1655

Resumo

O fisioterapeuta é fundamental no tratamento de pacientes com COVID-19, em especial na condução da ventilação mecânica (VM), desde a estratégia inicial até o reestabelecimento da ventilação espontânea. O corpo de evidências a respeito do desmame da VM em pacientes com COVID-19 ainda é incipiente e, portanto, sua execução deve combinar recomendações internacionalmente aceitas sobre desmame com medidas adicionais de segurança. Recomenda-se a avaliação diária da possibilidade de desmame, observando critérios como a capacidade de oxigenação e proteção de vias aéreas. Índices preditivos podem auxiliar, porém, devemos evitar aqueles que envolvem desconexão do ventilador mecânico pelo risco de aerossolização. Pela mesma razão, recomenda-se que o teste de respiração espontânea seja realizado em ventilação com suporte pressórico. A VM não invasiva pós extubação permanece indicada quando houver estrutura adequada para sua realização. Aos pacientes traqueostomizados em respiração espontânea, recomenda-se o uso de filtro trocador de calor e umidade de alta eficiência.

Palavras-chave

Fisioterapia; Desmame; COVID-19.

Abstract

The physiotherapist is essential for the treatment of patients with COVID-19, especially in the management of mechanical ventilation (MV), from the initial MV settings to the reestablishment of spontaneous breathing. The body of evidence regarding weaning from MV in patients with COVID-19 is still incipient and, therefore, its implementation should combine internationally accepted weaning recommendations with additional safety measures. Daily screenings of potentially eligible patients for weaning are recommended, observing criteria such as oxygenation and patient’s capacity of protecting the airways. Predictive indexes can be helpful; however, those involving disconnection from the mechanical ventilator must be avoided due to risk of aerosolization. For the same reason, it is recommended that spontaneous breathing trials should be performed using MV with pressure support. Non-invasive mechanical ventilation after extubation remains indicated when an adequate environment is guaranteed. For tracheostomized patients in spontaneous breathing, the use of a highly efficient heat and moisture exchanger filter is recommended.

Keywords

Physiotherapy; Weaning; COVID-19.

Referências

1. WHO/OMS. Clinical management of severe acute respiratory infection (SARI) when COVID-19 disease is suspected: Interim guidance, 13 March 2020 [Internet]. Geneva: World Health Organization; 2020. Available from: https://www.who.int/docs/default-source/coronaviruse/clinical-managementof-novel-cov.pdf

2. Rosenbaum L. Facing Covid-19 in Italy - Ethics, Logistics, and Therapeutics on the Epidemic’s Front Line. N Engl J Med. 2020 May 14;382(20):1873-1875. doi: 10.1056/NEJMp2005492. Epub 2020 Mar 18.

3. Writing Group for the Alveolar Recruitment for Acute Respiratory Distress Syndrome Trial I, Cavalcanti AB, Suzumura EA, Laranjeira LN, Paisani DM, Damiani LP, et al. Effect of Lung Recruitment and Titrated Positive End-Expiratory Pressure (PEEP) vs Low PEEP on Mortality in Patients With Acute Respiratory Distress Syndrome: A Randomized Clinical Trial. JAMA. 2017 Oct 10;318(14):1335-1345. doi: 10.1001/jama.2017.14171.

4. Gobert F, Yonis H, Tapponnier R, Fernandez R, Labaune M-A, Burle J-F, et al. Predicting Extubation Outcome by Cough Peak Flow Measured Using a Built-in Ventilator Flow Meter. Respir Care. 2017 Dec;62(12):1505-19. doi: 10.4187/respcare.05460. Epub 2017 Sep 12.

5. Schnell D, Planquette B, Berger A, Merceron S, Mayaux J, Strasbach L, et al. Cuff Leak Test for the Diagnosis of Post-Extubation Stridor: A Multicenter Evaluation Study. J Intensive Care Med. 2019 May;34(5):391-6. doi: 10.1177/0885066617700095. Epub 2017 Mar 27.

6. Nemer SN, Barbas CS. Predictive parameters for weaning from mechanical ventilation. J Bras Pneumol. 2011 Sep-Oct;37(5):669-79. doi: 10.1590/s1806-37132011000500016.

7. Souza LC, Lugon JR. The rapid shallow breathing index as a predictor of successful mechanical ventilation weaning: clinical utility when calculated from ventilator data. J Bras Pneumol. 2015 NovDec;41(6):530-5. doi: 10.1590/S1806-37132015000000077.

8. El-Khatib MF, Zeineldine SM, Jamaleddine GW. Effect of pressure support ventilation and positive end expiratory pressure on the rapid shallow breathing index in intensive care unit patients. Intensive Care Med. 2008 Mar;34(3):505-10. doi: 10.1007/s00134-007-0939-x. Epub 2007 Dec 1.

9. Barbas CS, Isola AM, Farias AM, Cavalcanti AB, Gama AM, Duarte AC, et al. Brazilian recommendations of mechanical ventilation 2013. Part I. Rev Bras Ter Intensiva. 2014 AprJun;26(2):89-121. doi: 10.5935/0103-507x.20140017.

10. Barbas CS, Ísola AM, Farias AM, Cavalcanti AB, Gama AM, Duarte AC, et al. Brazilian recommendations of mechanical ventilation 2013. Part 2. Rev Bras Ter Intensiva. 2014 JulSep;26(3):215-39. doi: 10.5935/0103-507x.20140034.

11. Subirà C, Hernández G, Vázquez A, Rodríguez-García R , González-Castro A, García C, et al. Effect of Pressure Support vs T-Piece Ventilation Strategies During Spontaneous Breathing Trials on Successful Extubation Among Patients Receiving Mechanical Ventilation: A Randomized Clinical Trial. JAMA. 2019 Jun 11;321(22):2175-2182. doi: 10.1001/jama.2019.7234.

12. Zhang B, Qin YZ. Comparison of pressure support ventilation and T-piece in determining rapid shallow breathing index in spontaneous breathing trials. Am J Med Sci. 2014 Oct;348(4):300-5. doi: 10.1097/MAJ.0000000000000286.

13. Li Y, Li H, Zhang D. Comparison of T-piece and pressure support ventilation as spontaneous breathing trials in critically ill patients: a systematic review and meta-analysis. Crit Care. 2020 Feb 26;24(1):67. doi: 10.1186/s13054-020-2764-3.

14. Cook TM, El-Boghdadly K, McGuire B, McNarry AF, Patel A, Higgs A. Consensus guidelines for managing the airway in patients with COVID-19: Guidelines from the Difficult Airway Society, the Association of Anaesthetists the Intensive Care Society, the Faculty of Intensive Care Medicine and the Royal College of Anaesthetists. Anaesthesia. 2020 Jun;75(6):785-799. doi: 10.1111/anae.15054. Epub 2020 Apr 1.

15. Alhazzani W, Møller MH, Arabi YM, Loeb M, Gong MN, Fan E, et al. Surviving Sepsis Campaign: Guidelines on the Management of Critically Ill Adults with Coronavirus Disease 2019 (COVID-19). Crit Care Med. 2020 Jun;48(6):e440-e469. doi: 10.1097/CCM.0000000000004363.

16. Tran K, Cimon K, Severn M, Pessoa-Silva CL, Conly J. Aerosol generating procedures and risk of transmission of acute respiratory infections to healthcare workers: a systematic review. PLoS One. 2012;7(4):e35797. doi: 10.1371/journal.pone.0035797. Epub 2012 Apr 26.

17. Heyd CP, Desiato VM, Nguyen SA, O’Rourke AK, Clemmens CS, Awad MI, et al. Tracheostomy protocols during COVID-19 pandemic. Head Neck. 2020 Jun;42(6):1297-1302. doi: 10.1002/hed.26192. Epub 2020 May 2.

18. Baron P. Generation and Behavior of Airborne Particles (Aerosols). Atlanta: National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention; [2020]. Available from: https://www.cdc.gov/niosh/topics/aerosols/pdfs/Aerosol_101.pdf

5f6df9220e8825432597b916 assobrafir Articles
Links & Downloads

ASSOBRAFIR Ciência

Share this page
Page Sections