ASSOBRAFIR Ciência
https://assobrafirciencia.org/article/5de02ddd0e88256d7f4ce1d5
ASSOBRAFIR Ciência
Artigo de Revisão

Lower limb musculoskeletal biomechanics in patients with chronic obstructive pulmonary disease

Biomecânica musculoesquelética de membros inferiores em pacientes com doença pulmonar obstrutiva crônica

Fernando Aguiar Lemos, Raquel Oliveira Lupion, Marco Aurélio Vaz, Marli Maria Knorst, Alexandre Simões Dias

Downloads: 1
Views: 727

Abstract

Introduction: The lower limb peripheral muscle dysfunction in patients with chronic obstructive pulmonary disease (COPD) has been considered one of the main limiting factors of physical exercise. Several biomechanical techniques have been used to identify intrinsic and extrinsic muscular tissue characteristics in response to different types of acute and/or chronic physical stress. This study aimed at identifying the most discussed issues in the specific literature related to peripheral muscle dysfunction in COPD. Methodology: A digital search was conducted in the following databases: Periódicos CAPES, PubMed and Medline. Results: Three main themes were identified: 1) morphological metabolic muscle changes in COPD; 2) skeletal muscle mechanical properties in COPD; 3) the effect of acute and chronic exercise in patients with COPD. A total of thirty-two medical journals in the areas of pneumology, biomechanics, surgery and sports medicine were reviewed. Discussion: Changes resulting from muscle dysfunction reduced both force production capacity and resistance to fatigue, leading COPD patients to lower tolerance to exercise. The abnormal inflammatory response contributed to the occurrence of oxidative stress and to decreased formation of antioxidant agents. These factors limit muscle metabolism and decrease both the tissue’s structure and function. Conclusion: Higher levels of hypoxemia and inflammation determined lower force capacity and muscle resistance in patients with COPD, which is not observed in subjects with preserved muscle mass.

Keywords

COPD; Muscle Skeletal; Biomechanics; Muscle fatigue; Lower extremity.

Resumo

Introdução: A disfunção muscular periférica de membros inferiores em pacientes com doença pulmonar obstrutiva crônica (DPOC) tem sido considerada um dos principais fatores limitantes do exercício físico. Diversas técnicas biomecânicas são utilizadas para identificar, em diferentes faixas etárias, sexos e níveis de doenças características extrínsecas e intrínsecas do tecido muscular em resposta ao estresse físico agudo e/ou crônico. Desta forma, este trabalho tem o objetivo de identificar os temas mais abordados pela literatura, em relação à disfunção muscular periférica na DPOC. Metodologia: Para a realização deste estudo, foi realizada pesquisa digital no Portal de Periódicos Capes, Pub Med e Medline. Resultados: Três principais temas foram identificados: 1) alterações morfológicas musculares na DPOC; 2) propriedades mecânicas musculares na DPOC; 3) Efeito do exercício agudo e crônico na disfunção muscular periférica de membros inferiores em pacientes com DPOC. Um total de 32 revistas voltadas a áreas médicas como pneumologia, biomecânica, cirurgia e medicina do esporte foram consultadas. Discussão: Alterações decorrentes da disfunção muscular reduzem a capacidade de produção de força e resistência à fadiga, o que leva indivíduos com DPOC a apresentarem menor tolerância ao exercício. Ainda é possível observar uma resposta inflamatória anormal, o que pode aumentar o estresse oxidativo e prejudicar a formação de agentes antioxidantes. Todas estas situações limitam o metabolismo muscular e alteram a estrutura e a função deste tecido. Conclusão: Foi possível observar que altos níveis de hipoxemia e inflamação reduzem a capacidade de força e resistência muscular. Este fato não é observado em indivíduos com a massa muscular preservada.

Palavras-chave

DPOC; Músculo esquelético; Biomecânica; Fadiga muscular; Membro inferior.

Referências

1. Hansen MJ, Gualano RC, Bozinovski S, Vlahos R, Anderson GP. Therapeutic prospects to treat skeletal muscle wasting in COPD (chronic obstructive lung disease). Pharmacol Ther. 2006 Jan;109(1-2):162-72.

2. Global Initiative for Chronic Obstructive Lung Disease, Inc, 2010 [Revised 2011; cited 2012 Feb 5]. Disponível em: http://www.goldcopd.org/.br.

3. Reardon JZ, Lareau SC, ZuWallack R. Functional status and quality of life in chronic obstructive pulmonary disease. Am J Med. 2006 Oct;119(10 Suppl 1):32-7.

4. Man WD, Kemp P, Moxham J, Polkey MI. Skeletal muscle dysfunction in COPD: clinical and laboratory observations. Clin Sci (Lond). 2009 Oct;117(7):251-64.

5. Swallow EB, Reyes D, Hopkinson NS, Man WD, Porcher R, Cetti EJ, et al. Quadriceps strength predicts mortality in patients with moderate to severe chronic obstructive pulmonary disease. Thorax. 2007 Feb;62(2):115-20.

6. Mariângela Pimentel`Pincelli ACBG, Camilo Fernandes, André G C Cavalheiroa, Daiane A P Haussen, Israel Silva Maia. Características de pacientes com DPOC internados em UTI de um hospital de referência para doenças respiratórias no Brasil. jornal Brasileiro de Pneumologia. [Original]. 2001;37(2):6.

7. Wust RC, Morse CI, de Haan A, Jones DA, Degens H. Sex differences in contractile properties and fatigue resistance of human skeletal muscle. Exp Physiol. 2008 Jul;93(7):843-50.

8. Wust RC, Morse CI, de Haan A, Rittweger J, Jones DA, Degens H. Skeletal muscle properties and fatigue resistance in relation to smoking history. Eur J Appl Physiol. 2008 Sep;104(1):103-10.

9. Marquis K, Debigare R, Lacasse Y, LeBlanc P, Jobin J, Carrier G, et al. Midthigh muscle crosssectional area is a better predictor of mortality than body mass index in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2002 Sep 15;166(6):809-13.

10. Gea J, Barreiro E. [Update on the mechanisms of muscle dysfunction in COPD]. Arch Bronconeumol. 2008 Jun;44(6):328-37.

11. Pitta F, Troosters T, Probst VS, Lucas S, Decramer M, Gosselink R. Potential consequences for stable chronic obstructive pulmonary disease patients who do not get the recommended minimum daily amount of physical activity. J Bras Pneumol. 2006 Jul-Aug;32(4):301-8.

12. Wells GD, Selvadurai H, Tein I. Bioenergetic provision of energy for muscular activity. Paediatr Respir Rev. 2009 Sep;10(3):83-90.

13. Allen DG, Lamb GD, Westerblad H. Skeletal muscle fatigue: cellular mechanisms. Physiol Rev. 2008 Jan; 88(1):287-332.

14. Green HJ, Duhamel TA, Smith IC, Rich SM, Thomas MM, Ouyang J, et al. Muscle fatigue and excitation-contraction coupling responses following a session of prolonged cycling. Acta Physiol (Oxf). 2011 Dec;203(4):441-55.

15. Wust RC, Degens H. Factors contributing to muscle wasting and dysfunction in COPD patients. Int J Chron Obstruct Pulmon Dis. 2007;2(3):289-300.

16. Eduardo Foschini Miranda CM, Simone Dal Corso. Disfunção muscular periférica em DPOC membros inferiores versus membros superiores. Jornal Brasileiro de Pneumologia. [Revisão]. 2011; 37(3):9.

17. Stein TP, Wade CE. Metabolic consequences of muscle disuse atrophy. J Nutr. 2005 Jul;135(7):1824S8S.

18. Pelegrino NR, Lucheta PA, Sanchez FF, Faganello MM, Ferrari R, Godoy I. Influence of lean body mass on cardiopulmonary repercussions during the six-minute walk test in patients with COPD. J Bras Pneumol. 2009 Jan;35(1):20-6.

19. Menezes AM, Macedo SE, Noal RB, Fiterman J, Cukier A, Chatkin JM, et al. Pharmacological treatment of COPD. J Bras Pneumol. Jul-Aug;37(4):527-43.

20. Mathur S, Takai KP, Macintyre DL, Reid D. Estimation of thigh muscle mass with magnetic resonance imaging in older adults and people with chronic obstructive pulmonary disease. Phys Ther. 2008 Feb;88(2):219-30.

21. Malaguti C, Nery LE, Dal Corso S, Napolis L, De Fuccio MB, Castro M, et al. Scaling skeletal muscle function to mass in patients with moderate-to-severe COPD. Eur J Appl Physiol. 2006 Nov;98(5):482-8.

22. Narici MV, Maganaris CN, Reeves ND, Capodaglio P. Effect of aging on human muscle architecture. J Appl Physiol. 2003 Dec;95(6):2229-34.

23. Simard C, F. Maltais, P. Leblanc, P. M. Simard, and J. Jobin. Mitochondrial and capillarity changes in vastus lateralis muscle of COPD patients:electron microscopy study. Medicine Science Sports Exercise. May 1996;28(5):95,

24. Whittom F, Jobin J, Simard PM, Leblanc P, Simard C, Bernard S, et al. Histochemical and morphological characteristics of the vastus lateralis muscle in patients with chronic obstructive pulmonary disease. Med Sci Sports Exerc. 1998 Oct;30(10):1467-74.

25. Gosker HR, Wouters EF, van der Vusse GJ, Schols AM. Skeletal muscle dysfunction in chronic jobstructive pulmonary disease and chronic heart failure: underlying mechanisms and therapy perspectives. Am J Clin Nutr. 2000 May;71(5):1033-47.

26. Short KR, Bigelow ML, Kahl J, Singh R, Coenen-Schimke J, Raghavakaimal S, et al. Decline in skeletal muscle mitochondrial function with aging in humans. Proc Natl Acad Sci U S A. 2005 Apr 12;102(15):5618-23.

27. Rondelli RR, Dal Corso S, Simoes A, Malaguti C. Methods for the assessment of peripheral muscle fatigue and its energy and metabolic determinants in COPD. J Bras Pneumol. 2009 Nov;35(11):1125- 35.

28. Levy P, Wuyam B, Pepin JL, Reutenauer H, Payen JF. [Skeletal muscle abnormalities in chronic obstructive lung disease with respiratory insufficiency. Value of P31 magnetic resonance spectroscopy]. Rev Mal Respir. 1997 Jun;14(3):183-91.

29. Blazevich AJ, Sharp NC. Understanding muscle architectural adaptation: macro- and micro-level research. Cells Tissues Organs. 2005;181(1):1-10.

30. Polla B, D’Antona G, Bottinelli R, Reggiani C. Respiratory muscle fibres: specialisation and plasticity. Thorax. 2004 Sep;59(9):808-17.

31. Dourado VZ, Tanni SE, Vale SA, Faganello MM, Sanchez FF, Godoy I. Systemic manifestations in chronic obstructive pulmonary disease. J Bras Pneumol. 2006 Mar-Apr;32(2):161-71.

32. Gosker HR, Kubat B, Schaart G, van der Vusse GJ, Wouters EF, Schols AM. Myopathological features in skeletal muscle of patients with chronic obstructive pulmonary disease. Eur Respir J. 2003 Aug;22(2):280-5.

33. Man WD, Soliman MG, Nikoletou D, Harris ML, Rafferty GF, Mustfa N, et al. Non-volitional assessment of skeletal muscle strength in patients with chronic obstructive pulmonary disease. Thorax. 2003 Aug;58(8):665-9.

34. Debigare R, Cote CH, Hould FS, LeBlanc P, Maltais F. In vitro and in vivo contractile properties of the vastus lateralis muscle in males with COPD. Eur Respir J. 2003 Feb;21(2):273-8.

35. Morse CI, Wust RC, Jones DA, de Haan A, Degens H. Muscle fatigue resistance during stimulated contractions is reduced in young male smokers. Acta Physiol (Oxf). 2007 Oct;191(2):123-9.

36. Couillard A, Maltais F, Saey D, Debigare R, Michaud A, Koechlin C, et al. Exercise-induced quadriceps oxidative stress and peripheral muscle dysfunction in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2003 Jun 15;167(12):1664-9.

37. Degens H, Sanchez Horneros JM, Heijdra YF, Dekhuijzen PN, Hopman MT. Skeletal muscle contractility is preserved in COPD patients with normal fat-free mass. Acta Physiol Scand. 2005 Jul;184(3):235-42.

38. Degens H, Sanchez Horneros JM, Hopman MT. Acute hypoxia limits endurance but does not affect muscle contractile properties. Muscle Nerve. 2006 Apr;33(4):532-7.

39. Ofir D, Laveneziana P, Webb KA, Lam YM, O’Donnell DE. Mechanisms of dyspnea during cycle exercise in symptomatic patients with GOLD stage I chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2008 Mar 15;177(6):622-9.

40. Mador MJ, Bozkanat E, Kufel TJ. Quadriceps fatigue after cycle exercise in patients with COPD compared with healthy control subjects. Chest. 2003 Apr;123(4):1104-11.

41. Hoff J, Tjonna AE, Steinshamn S, Hoydal M, Richardson RS, Helgerud J. Maximal strength training of the legs in COPD: a therapy for mechanical inefficiency. Med Sci Sports Exerc. 2007 Feb;39(2):220-6.

42. Mador MJ, Kufel TJ, Pineda LA, Steinwald A, Aggarwal A, Upadhyay AM, et al. Effect of pulmonary rehabilitation on quadriceps fatiguability during exercise. Am J Respir Crit Care Med. 2001 Mar;163(4):930-5.

43. Vogiatzis I, Terzis G, Nanas S, Stratakos G, Simoes DC, Georgiadou O, et al. Skeletal muscle adaptations to interval training in patients with advanced COPD. Chest. 2005 Dec;128(6):3838-45.

44. Mador MJ, Bozkanat E, Aggarwal A, Shaffer M, Kufel TJ. Endurance and strength training in patients with COPD. Chest. 2004 Jun;125(6):2036-45.

45. Ortega F, Toral J, Cejudo P, Villagomez R, Sanchez H, Castillo J, et al. Comparison of effects of strength and endurance training in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2002 Sep 1;166(5):669-74.

46. Puhan M. A. SHJ, Frey M., Scharplatz M., Bachmann L. M. How should COPD patients exercise during respiratory rehabilitation? Comparison of exercise modalities and intensities to treat skeletal muscle dysfunction. Thorax. 2005 May;60(5):367-75.

5de02ddd0e88256d7f4ce1d5 assobrafir Articles
Links & Downloads

ASSOBRAFIR Ciência

Share this page
Page Sections